Inorganic Chemistry

New Hybrid [2]Catenanes Based on a 4,4'-Bipyridinium Ligand

Marcos Chas, Elena Pia, Rosa Toba, Carlos Peinador,* and José M. Quintela*

Departamento de Química Fundamental, Facultad de Ciencias, Universidade da Coruña, Campus A Zapateira, 15071 La Coruña, Spain

Received March 27, 2006

The self-assembly-mediated synthesis of metallomacrocycles **4a** and **4b** from (en)M(NO₃)₂ (M = Pd, Pt) and bipyridinium ligand **3** is described. The reaction is templated by disodium *p*-phenyldiacetic dicarboxylate, which is inserted into the macrocyclic cavity. Similarly, the self-assembly process between ligand **3**, (en)M(NO₃)₂ (M = Pd, Pt), and the macrocyclic polyether **6** resulted in the formation of hybrid catenanes **7a** and **7b**. In the [2]catenanes, the circumrotation of the macrocyclic polyether through the cavity of the metallocycle is slow on the ¹H NMR time scale.

Catenanes have experienced a dramatic development in the course of the last 2 decades.¹ In addition to the remarkable self-assembly formation reactions and the unusual structures, these interlocked molecules are regarded as very promising prototypes for molecular-scale memory devices, molecular machines, and motors.² The field of metal-containing macrocycles and their use in the formation of catenanes incorporating transition metals have been pioneered by Stang,³ Fujita,⁴ and Sauvage,⁵ who have synthesized catenanes containing coordinative bonds such as M^{II}–N (M = Pd, Pt, Cu, Ru). More recently, other catenanes including

- (2) (a) Feringa, B. L. Molecular Switches; Wiley-VCH: Weinheim, Germany, 2001. (b) Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly, K.; Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R. Science 2000, 289, 1172. (c) Jeppesen, J. O.; Perkins, J.; Becher, J.; Stoddart, J. F. Angew. Chem., Int. Ed. 2001, 40, 1216.
- (3) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853– 908.
- (4) (a) Fujita, M.; Fujita, N.; Ogura, K.; Yamaguchi, K. *Nature* 1999, 400, 52. (b) Hori, A.; Kumazawa, K.; Kusukawa, T.; Chand, D. K.; Fujita, M.; Sakamoto, S.; Yamaguchi, K. *Chem. – Eur. J.* 2001, 7, 4142 and references cited therein.
- (5) (a) Sauvage, J.-P. Acc. Chem. Res. 1998, 31, 611 and references cited therein. (b) Collin, J.-P.; Heitz, V.; Bonnet, S.; Sauvage, J.-P. Inorg. Chem. Commun. 2005, 8, 1063. (c) Chambron, J.-C.; Collin, J.-P.; Heitz, V.; Jouvenot, D.; Kern, J.-M.; Mobian, P.; Pomeranc, D.; Sauvage, J.-P. Eur. J. Org. Chem. 2004, 1627.

10.1021/ic0605165 CCC: \$33.50 © 2006 American Chemical Society Published on Web 07/13/2006

metals such as Au⁶ and Co⁷ in their frameworks have been reported. Furthermore, a large number of synthetic strategies based on ideas such as $\pi - \pi$ interactions, cation templation, hydrophobic forces, and H bonding have been developed to obtain catenanes with *organic* macrocycles.⁸ However, the number of hybrid catenanes with *organic* and *inorganic* macrocycles has remained relatively small.⁹

As a part of our continuing investigations with bipyridinium ligands¹⁰ and with the aim of designing new catenanes, we decided to combine the concept of molecular lock¹¹ and a self-assembly process based on π - π -stacking interactions between viologens and dioxoaryls in the synthesis of a hybrid [2]catenane. Ligand **3** was obtained by the reaction of bis(hexafluorophosphate) salt **1**·2PF₆¹² with 4-(bromomethyl)pyridine (**2**; Scheme 1).

The addition of 1 equiv of $(en)Pd(NO_3)_2$ to a D₂O solution of **3**·3NO₃ (15 mM) at room temperature gave rise to

- (6) Habermehl, N. C.; Jennings, M. C.; McArdle, C. P.; Mohr, F.; Puddephatt, R. J. Organometallics 2005, 24, 5004.
- (7) Abedin, T. S. M.; Thompson, L. K.; Miller, D. O. Chem. Commun. 2005, 5512.
- (8) For examples, see: (a) Steuerman, D. W.; Tseng, H.-R.; Peters, A. J.; Flood, A. H.; Jeppesen, J. O.; Nielsen, K. A.; Stoddart, J. F.; Heath, J. R. Angew. Chem. 2004, 116, 6648. (b) Chiu, S.-H.; Pease, A. R.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Angew. Chem. 2002, 114, 280. (c) Leigh, D. A.; Wong, J. K. Y.; Dehez, F.; Zerbetto, F. Nature 2003, 424, 174.
- (9) (a) Gruter, G.-J. M.; de Kanter, F. J. J.; Markies, P. R.; Nomoto, T.; Akkerman, O.; Bickelhaupt, S. F. J. Am. Chem. Soc. 1993, 115, 12179.
 (b) Cardenas, D. J.; Gaviña, P.; Sauvage, J.-P. J. Am. Chem. Soc. 1997, 119, 2656. (c) Dietrich-Buchecker, C.; Colasson, B.; Fujita, M.; Hori, A.; Geum, N.; Sakamoto, S.; Yamaguchi, K.; Sauvage, J.-S. J. Am. Chem. Soc. 2003, 125, 5717. (d) Johnstone, K. D.; Yamaguchi, K.; Gunter, M. J. Org. Biomol. Chem. 2005, 3, 3008.
- (10) Chas, M.; Platas-Iglesias, C.; Peinador, C.; Quintela, J. M. *Tetrahedron Lett.* 2006, 47, 3119.
- (11) (a) Fujita, M.; Ibukuro, F.; Yamaguchi, K.; Ogura, K. J. Am. Chem. Soc. 1995, 117, 4175. (b) Hori, A.; Kataoka, H.; Okano, T.; Sakamoto, S.; Yamaguchi, K.; Fujita, M. Chem. Commun. 2002, 182.

Inorganic Chemistry, Vol. 45, No. 16, 2006 6117

^{*} To whom correspondence should be addressed. E-mail: capeveqo@udc.es (C.P.), jqqqqf@udc.es (J.M.Q.). Tel: 34 81 167000. Fax: 34 81 167065.

 ⁽a) Molecular Catenanes, Rotaxanes and Knots; Sauvage, J.-P., Dietrich-Buchecker, C., Eds.; Wiley-VCH: Weinheim, Germany, 1999. (b) For review articles, see: Amabilino, D. B.; Stoddart, J. F. Chem. Rev. 1995, 95, 2725. (c) Chambron, J.-C.; Dietrich-Buchecker, C.; Sauvage, J.-P. In Templating Self-Assembly, and Self-Organisation; Sauvage, J.-P., Hosseini, M. W., Eds.; Comprehensive Supramolecular Chemistry Vol. 9; Pergamon: New York, 1996; pp 43–83. (d) Breault, G. A.; Hunter, C. A.; Mayers, P. C. Tetrahedron 1999, 55, 5265. (e) Vögtle, F.; Dünnwald, T.; Schmidt, T. Acc. Chem. Res. 1996, 29, 451.

Figure 1. ¹H NMR (D₂O, 300 MHz, 298 K) of (i) **3**·3NO₃, (ii) an equimolecular solution of **3**·3NO₃ and (en)Pt(NO₃)₂ (10 mM) after heating at 373 K for 24 h, (iii) an equimolecular solution of **3**·3NO₃ and (en)Pt(NO₃)₂ (0.5 mM) after heating at 373 K for 7 days, (iv) an equimolecular solution of **3**·3NO₃, (en)Pt(NO₃)₂, and **5** (10 mM) after heating at 373 K for 12 h, and (v) **5**.

Figure 2. Optimized geometry of metallomacrocycle 4b.

oligomeric products. Dilution of this solution showed that oligomeric products are in equilibrium with $4a \cdot 5NO_3$ and that dilution favors the formation of a metallocycle. Only at concentrations of 0.5 mM or lower is $4a \cdot 5NO_3$ the only product (see the Supporting Information). Electrospray ionization mass spectrometry (ESI–MS) of $4a \cdot 5NO_3$ in a CH₃OH solution at 0.5 mM concentration confirmed the structure of $4a \cdot 5NO_3$, showing a peak for m/z 445 [M – $(NO_3)_2$]²⁺·CH₃OH].

Pt complex **4b**•5NO₃ could not be self-assembled at room temperature. The formation of macrocycle **4b**•5PF₆ was achieved by the reaction of **3**•3NO₃ (0.5 mM) with 1 equiv of (en)Pt(NO₃)₂ at 100 °C for 7 days and subsequent anion exchange with NH₄PF₆. The ¹H and ¹³C NMR spectra of **4b**•5PF₆, together with its 2D (COSY, HMQC, and HSQC) NMR spectra (Supporting Information), provide good evidence for the formation of the macrocycle. The ¹³C NMR signals for C_a and C_q (Figure 1) have shifted downfield from those of the free ligand ($\Delta \delta = 5.0$ and 7.2 ppm, respectively) as a result of the formation of coordinative bonds. The Scheme 2. Synthesis of Catenanes 7a and 7b

formation of **4b**•5PF₆ was also supported by fast atom bombardment (FAB)-MS. The isolation on a preparative scale of pure macrocycle **4b**•5PF₆ was achieved by using disodium *p*-phenyldiacetic dicarboxylate (**5**) as a template. The heating at 100 °C for 12 h of a water solution of **5** (10 mM), **3**•3NO₃ (10 mM), and (en)Pt(NO₃)₂ (10 mM) gave, after counteranion exchange,¹³ **4b**•5PF₆ in 76% yield. The ¹H NMR spectra for **3**•3NO₃, **5**, and **5**⊂**4b**•5NO₃ in D₂O are shown in Figure 1. The upfield shift of the signals of template **5** ($\Delta \delta = 1.33$ and 0.30 ppm, H_r and H_s, respectively) along with the upfield shift of the pyridine (H_{p,q}) and phenylene protons (H_{f,g}) strongly suggests that the template is inserted into the cavity of metallomacrocycle.

The **4b** system was characterized by means of density functional theory calculations (B3LYP model). The calculated geometry is shown in Figure 2 (see also the Supporting Information). The metal center shows a square-planar geometry, in which bond distances and angles are in the usual range.¹⁴ Figure 2 shows distances between nonbonded atoms of the metallomacrocycles that give an estimate of the size of the macrocyclic cavity. The distance between the two pseudoparallel bipyridinium units in **4b** amounts to

⁽¹²⁾ Anelli, P. L.; Ashton, P. R.; Ballardini, R.; Balzani, V.; Delgado, M.; Gandolfi, M. T.; Goodnow, T. T.; Kaifer, A. E.; Philp, D.; Pietraskiewicz, M.; Prodi, L.; Reddington, M. V.; Slawin, A. M. Z.; Spencer, N.; Stoddart, J. F.; Vicent, C.; Williams, D. J. J. Am. Chem. Soc. **1992**, 114, 193.

⁽¹³⁾ The addition of NH_4PF_6 causes the precipitation of $4b \cdot 5PF_6$, but 5 remains in solution.

 ^{(14) (}a) Navarro, J. A. R.; Freisinger, E.; Lippert, B. Inorg. Chem. 2000, 39, 2301. (b) Liu, Q.-D.; Jia, W.-L.; Wang, S. Inorg. Chem. 2005, 44, 1332.

Figure 3. ¹H NMR (D₂O, 500 MHz, 298 K) and ¹³C NMR (D₂O, 125 MHz, 298 K) spectra of metallocycle 4a·5NO₃ (top) and catenane 7a·5NO₃ (bottom).

7.1–7.8 Å, which is approximately twice the optimal π -stacking distance.¹⁵ Thus, the macrocyclic cavity of **4b** presents a nearly optimal size to form supramolecular complexes through π -stacking interactions with electron-rich aromatic units.

When an equimolar solution (10 mM) of ligand $3\cdot 3NO_3$, (en)Pd(NO₃)₂, and macrocycle 6^{12} in D₂O was heated at 100 °C for 10 h, the solution color changed to red and no peaks other than those of catenane $7a\cdot 5NO_3$ could be observed in the ¹H NMR spectrum (Scheme 2). The diffusion coefficients obtained from DOSY¹⁶ (diffusion-ordered NMR spectroscopy) experiments of catenane $7a\cdot 5NO_3$ and ligand $3\cdot 3NO_3$ showed that the catenane is significantly larger than its components.¹⁷ The signals from the ligand, macrocycle 6, and the Pd complex showed the same diffusion coefficients, indicating that the three components diffuse as a whole.

In the [2]catenane, exchange between the "inside" and "alongside" hydroquinol rings is slow at room temperature, resulting in all of the OCH₂ groups being anisochronous on the ¹H NMR time scale. The ¹H and ¹³C NMR spectra show the upfield shift of the signals for the "inside" hydroquinol ring protons ($\delta = 3.67$ ppm)¹⁸ and carbons (peaks labeled x and y in Figure 3) as a result of the C-H- π interaction with the pyridine and *p*-phenylene rings on the short side of the rectangle. The protons and carbons of these rings are downfield shifted from those of the macrocycle $4a \cdot 5NO_3$ (red lines in Figure 3). Moreover, the signals for the protons and carbons at the central positions of the bipyridine moieties have shifted upfield (blue lines in Figure 3) as a result of the shielding effect of the macrocycle **6**.

Employing the same strategy that we used in the preparation of catenane **7a**•5NO₃, the analogous platinum catenane could be isolated as its hexafluorophosphate salt. A solution of ligand **3**•3NO₃, (en)Pt(NO₃)₂, and macrocycle **6** (2 equiv) in H₂O was heated at 100 °C for 12 days. The addition of NH₄PF₆ made it possible to obtain **7b**•5PF₆ as a red powder in high yield (85%). The formation of **7b**•5PF₆ was confirmed by NMR and MS. The FAB-MS spectrum of **7b**• 5PF₆ is very characteristic of interlocked molecular compounds containing bipyridinium residues.¹⁹ Prominent peaks are observed at m/z 2024.6 [MH]⁺, 1879.6 [M – PF₆⁻]⁺, 1734.5 [M – 2PF₆⁻]⁺, 1588.8 [M – 3PF₆⁻]⁺, 867.4 [M – 2PF₆⁻]²⁺, and 794.7 [M – 3PF₆⁻]²⁺.

Acknowledgment. This research was supported by the Xunta de Galicia (Grant PGIDIT04PXIC10307PN) and Ministerio de Educación y Cultura (Grant BQU2003-00754). M.C. thanks the Xunta de Galicia for a predoctoral fellowship. Special thanks go to Professor Carlos Platas for his help with the calculations.

Supporting Information Available: Experimental details and characterization of **3**·3NO₃, **4b**·5PF₆, and **7b**·5PF₆. This material is available free of charge via the Internet at http://pubs.acs.org.

IC0605165

⁽¹⁵⁾ Bonnefous, C.; Bellec, N.; Thummel, R. P. Chem. Commun. 1999, 1243.

^{(16) (}a) Johnson, C. S., Jr. Prog. Nucl. Magn. Reson. 1999, 34, 203. (b) Stilbs, P. Anal. Chem. 1981, 53, 2137. (c) Morris, K. F.; Johnson, C. S., Jr. J. Am. Chem. Soc. 1992, 114, 3139. (d) For a review on the application of diffusion measurements in supramolecular chemistry, see: Cohen, Y.; Avram, L.; Frish, L. Angew. Chem., Int. Ed. 2005, 44, 520-554.

⁽¹⁷⁾ DOSY experiments of macrocycle 6 could not be carried out because of the poor solubility of this compound in D_2O .

⁽¹⁸⁾ The assignment of this signal was strongly supported by the heteronuclear single quantum coherence (HSQC) experiment, which showed a correlation between C_y and H_y.

⁽¹⁹⁾ Amabilino, D. B.; Ashton, P. R.; Brown, C. L.; Córdova, E.; Godínez, L. A.; Goodnow, T. T.; Kaifer, A. E.; Newton, S. P.; Pietraszkiewicz, M.; Philp, D.; Raymo, F. M.; Reder, A. S.; Rutland, M.; Slawin, A. M. Z.; Spencer, N.; Stoddart, J. F.; Williams, D. J. J. Am. Chem. Soc. 1995, 117, 1271.